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Abstract 

This paper will demonstrate how the bootstrap can be used to analyse 
unreplicated two-level designs with some missing responses. Also, it will be  
shown how the bootstrap can be used to construct confidence intervals for the 
effect size, and how it can be used to estimate the missing values. 

1. Introduction 

Missing values in factorial and fractional factorial designs destroys 
the orthogonal structure of the design and leads to relatively complicated 
least square analysis. Several papers exist on this subject. Draper and 
Stoneman [12] give a method to estimate the missing values, but their 
method depends on sacrificing some of the effects to estimate the missing 
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values. Wilkinson [23, 24] gives a method that can require considerable 
computations. Shearer [19] gives a new procedure to use with factorial 
designs by using an iterated method and convergence of such iteration. 

In this paper, we propose the bootstrap approximation of Efron [13] 
for selecting the active factors (factors that have influence on the 
response) and for approximating the size of the effect. After doing this, we 
will show how the bootstrap can be used to estimate the missing values, 
and we will compare our estimates of missing values with others, also we 
will construct confidence intervals for the effect size. 

Recently, the bootstrap was shown by Qumsiyeh and Shaughnessy 
[18] to be a very effective method in selecting active factors in 
unreplicated two-level factorial design, but without missing values. 
Benski [3] compares nine different methods for determining the active 
factors, among those methods are Box and Meyer [8], La Pena and La 
Pena [15], Lenth [16], and Voss [22]. 

The bootstrap is proved to provide “better than normal” estimates of 
distribution functions of studentized statistics, see, for example, Singh 
[20], Bickle and Freedman [5], and Babu and Singh [1, 2]. Qumsiyeh [17] 
proved that bootstrap approximation for the distribution of the 
studentized least square estimate is asymptotically better not only than 
the normal approximation, but also than the two-term Edgeworth 
expansion. Lahiri [14] show the superiority of the bootstrap for 
approximating the distribution of M-estimators. Bhattacharya and 

Qumsiyeh [4] do an -pL comparison between the bootstrap and 
Edgeworth expansions. 

2. Bootstrap Method to Select  
Active Factors 

Unreplicated factorial experiments are commonly employed in 
industrial settings effect sparsity is a common assumption. To identify 
the active factors in such experiments, especially in the case of missing 
values, we propose the following procedure: 
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First. Two level full factorial unreplicated experiments with missing 
data points. 

Assume the data set has N total responses and that one response is 
missing, let us assume that we want to test, if some effect L is active or 
not (L could be the interaction of other effect, for example, ABC ): 

● Sample 12 −N  responses with replacement from data at the +1 

level of a given effect. 

● Sample 12 −N  responses with replacement from data at the −1 

level of a given effect. 

● Estimate the effect of that factor using the difference between the 
average at the +1 level and −1 level. 

● Repeat the sampling procedure a large number of times (1,000 in 
our example). 

● Determine the upper ( )21 α−  and lower 2α  percentile points of 

the resampled effect values. 

● Use these values to construct the ( ) 1001 ×α−  percent confidence 

interval for the effect size. 

● If the confidence interval does not contain zero, then the factor is 
identified as an active factor (have influence on the response), otherwise, 
it is an inactive factor. 

● We propose estimating the missing value by using the least 
effective factor (the factor for which its confidence interval definitely 
contains zero and the distance from zero to the closest end point is larger 
than the same distance for all other factors), and having the difference 
between the average at the (+) setting and the (−) setting be zero, and 
solve for the missing value. 

Notes. (1) Sampling is done with replacement. It can be done by 
using SAS, EXCEL, or any resampling software available, in our case, it 
was done by SAS. 
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(2) The above method would work best, if your total runs of the 

experiment are at least 823 =  with one missing value. 

(3) If you have two or more missing values, then we can do the same 

thing, but the number of runs should be 1624 =  runs; For the case of 
two missing values, if both from the (+) setting of L, then you would 
resample ( )22 −N  at the (+) setting and ( )22 −N  at the (–) setting. If 
the missing responses are one at the (+) setting of L and other at the (–) 
setting, then you resample 12 −N  responses at each setting. You will do 
something similar for three missing data points as we will see later. 

(4) Again, if we have two missing values, we can estimate them by 
using the two least effective factors as described above and having the 
difference between the average at the (+) setting and the (−) setting for 
these be set to zero, and solve for the two equations with two unknowns 
for missing value. 

(5) Some might think that this is similar to a t-test. However, after we 
estimate the missing responses and produce the normal or half normal 
plots, it will consider all the different interactions. 

Second. Two level fractional factorial unreplicated experiments: 

The previous procedure will also work with fractional factorials under 
the previous conditions, however, we have to realize that some factors 
will be confounded with others and that we should be left with at least 
three data points at the (+) setting and three data points at the (–) 
setting. 

3. The Data Sets 

Two data sets will be considered to do the above analysis. The results 
will be compared with the results obtained by others. 

Data set I  

Our first data set is an example of a 427−  fractional factorial design 
given in Box and Hunter [6] and used by Draper and Stoneman [12]. 
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A B C D E F G Y          

–1 –1 –1 –1 1 1 1 68.4 

1 –1 –1 –1 –1 –1 1 77.7 

–1 1 –1 –1 –1 1 –1 (66.4)M 

1 1 –1 –1 1 –1 –1 81.0 

–1 –1 1 –1 1 –1 –1 78.6 

1 –1 1 –1 –1 1 –1 41.2 

–1 1 1 –1 –1 –1 1 68.7 

1 1 1 –1 1 1 1 38.7 

M here indicate the missing value, which was 66.4 in the original 
data set, when the observations are complete, seven combinations of 
effects can be estimated, in addition to the mean. Here ,, ABEABCD ==  

.and, BCGACF ==  

Data set II 

Our second examples are four data sets of a 16 run two-level design 
from a paper by Box and Meyer [8]: 

A B C D Y1 Y2 Y3 Y4 

–1 –1 –1 –1 0.23 43.7 14 0.08 

1 –1 –1 –1 0.3* 40.2 16.8 0.04 

–1 1 –1 –1 0.52 42.4 15 0.53 

1 1 –1 –1 0.54 44.7 15.4 0.43 

–1 –1 1 –1 0.7* 42.4 27.6 0.31 

1 –1 1 –1 0.76 45.9 24 0.09 

–1 1 1 –1 1 42.2 27.4* 0.12 

1 1 1 –1 0.96 40.6 22.6 0.36 

–1 –1 –1 1 0.32 42.4 22.3 0.79 

1 –1 –1 1 0.39 45.5 17.1 0.68 

–1 1 –1 1 0.61 43.6 21.5 0.73 

1 1 –1 1 0.66 40.6 17.5* 0.08 

–1 –1 1 1 0.89 44 15.9 0.77 

1 –1 1 1 0.97 40.2 21.9 0.38 

–1 1 1 1 1.07 42.5* 16.7* 0.49 

1 1 1 1 1.21 46.5* 20.3 0.23 
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For this data set, we are going to assume that we have two missing 
data points from each data set with response Y1 or Y2, and three missing 
data points from the data set with response Y3. For the data set with 
response Y4, we did the experiment assuming one, two, and three missing 
data points. Assume the ones with * are the ones assumed missing, they 
were picked out at random, the experiment was repeated by using other 
missing data points and yielded the same result. 

4. Data Analysis 

Data set I 

The average response for each of the 1,000 runs, for each effect A-G, 
at the high and low setting was obtained resampling three of the 4 
responses at each setting. A factor effect is judged to be active, if the 
bootstrap confidence interval for the effect does not contain zero. As 
before, the effect with confidence interval that definitely contain the zero 
and for which, the zero is farthest from the closer end points among all 
other effects, is the factor we will use to estimate the missing value. 

The effect size (the difference between the average of the +1 setting 
and the −1 setting) and the confidence interval for the effect are given for 
each of the 7 factors in Table 1: 

Table 1 

Effect Effect Estimate 95%Confidence Interval 

  Lower Upper 

Estimate of missing value 
Assuming the effect inactive 

A – 12.8 – 32.78 10.2 22.8 

B – 3.5 – 29.6 23.62 77.8 

C – 19.05 – 39.27 0.5 0 

D    0.66 – 24.82 18.00 64.4 

E    4.60 – 24.9 29.83 79.2 

F – 27.34 – 39.7  – 7.4 157.6 

G – 3.55 – 29.3 20.32 52.8 
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From the above table, we can see that only effect F does not contains 
0, and is definitely active. 

Also, the above table agrees with results obtained by Box and Hunter 
[6] and used by Draper and Stoneman [12], actually Draper and 
Stoneman indicate clearly that we can not use C or F to estimate the 
missing value, which is what we came up with since F the active effect 
and 0 is very close to the confidence interval for effect C. 

The most inactive effect from the above would be effect E and B, 
because the distance from the end points to 0 is at least 23. We can use 
these to estimate the missing value; we can, for example, average the two 
estimates ((77.8 + 79.22)/2), which is 78.5. 

Now using this estimate of the missing value, we can do the 
bootstrapping again, with 4 sample points at each setting, and as in 
Qumsiyeh and Shaughnessy [18]. The results are given in Table 2: 

Table 2 

Effect Effect Estimate 95%Confidence Interval 

  Lower Upper 

A – 13.7 – 33.43 5.91 

B – 0.28 – 19.55 19.90 

C – 19.64 – 36.28  – 2.55 

D 0.66 – 24.82 18.00 

E 1.31 – 21.06 24.55 

F – 19.38 – 36.14  – 3.29 

G – 6.37 – 25.38 15.55 

Again, this table shows that F is the only active factor. 

The half normal plot for the original data set and the one using our 
estimate for the missing data point are given in Table 3. 
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Table 3 

The half-normal normal plot without the 
missing data point, i.e., the original data 
set. 

The half-normal plot with the missing 
data point and using our estimate for the 
missing point. 

  

As we can see from the half normal plots, that effect ACF =  is 
clearly active when we substituted 78.5 for the missing value. It is not 
clear from the original data if AC is active. 

Data set II 

The average response for each of the 1,000 runs, for each effect A 
through D and their interactions are performed, at the high and low 
setting was obtained. Since we are assuming two missing data points, we 
are resampling 6 or 7 of the 8 responses (or 8-the number missing) at 
each setting depending on whether at a certain setting, we have one or 
two missing data points. A factor effect is judged to be active, if the 
bootstrap confidence interval for the effect does not contain zero. For the 
case of two missing data points, the two most inactive effects as described 
before can be used to estimate the missing values. 

The effect size (the difference between the average of the +1 setting 
and the −1 setting) and the confidence interval for the effect is given for 
each of the 15 factors. Results are given below for each of the responses 
Y1 through Y4. 
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Results for Y1 

Table 4 below, gives the bootstrap results for the response Y1: 

Table 4 

Effect Effect Estimate 95%Confidence Interval 

  Lower Upper 

A 0.1300 – 0.171 0.43 

B 0.2132 – 0.06 0.51667 

C 0.5136  0.378 0.655 

D 0.0948 – 0.215 0.41 

AB  – 0.0702 – 0.3614 0.2614 

AC  – 0.0615 – 0.3692 0.2383 

AD  – 0.0286 – 0.3271 0.27 

BC 0.0436 – 0.28 0.3443 

BD 0.0593 – 0.3058 0.38 

CD 0.0938 – 0.195 0.3564 

ABC 0.0705 – 0.245 0.41 

ABD 0.08442 – 0.2129 0.3821 

ACD 0.0916 – 0.2291 0.4317 

BCD  – 0.0744 – 0.3507 0.235 

ABCD  – 0.0479 – 0.3492 0.2983 

It can be seen from the above table that factor C is definitely active 
since its confidence interval does not contain zero, also it is good to note 
that factor B is almost active, it would be considered active, if we use a 
90% confidence interval. These results agree with the results of Box and 
Meyer [8], Daniel [9, 10], and the half- normal plot method. 

The two most inactive factors from the above table are BD and ABCD, 
they both definitely contain 0 and the distance from zero to the closest 
end point is at least 0.2983 for ABCD and 0.3058 for BD. However, we can 
not use these two factors to estimate the missing values because we will 
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end up with no solution, so we use ABCD and the next most inactive 
factor, which is BC and use these two to estimate the missing values. We 
get two equations with two unknowns; the estimates for the missing 
points would be in this case, 0.41 and 0.64. 

The half normal plot for the original data without missing data points 
and the one using our estimate for the missing data points are given in 
Table 5. 

Table 5 

The half-normal normal plot without the 
missing data point, i.e., the original data set. 

The half-normal plot with the missing 
data points and using our estimate for 
the missing points. 

  

When two data values are missing, both graphs are similar in 
showing that B and C stand out, so they are identified as the active 
factors. 
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Results for Y2 

Table 6 gives the bootstrap results for the response Y2: 

Table 6 

Effect Effect Estimate 95%Confidence Interval 

  Lower Upper 

A – 0.3788 – 2.2357 1.5429 

B – 0.6351 – 2.575 1.5333 

C – 0.4226 – 2.3833 1.7833 

D – 0.0487 – 2.0583 1.85 

E = AB – 0.2231 – 2.2357 1.6929 

F = AC – 0.1195 – 2.1357 1.8857 

G = AD – 0.6156 – 2.4714 1.2857 

H = BC – 0.5544 – 2.633 1.3833 

J = BD – 0.170 – 2.1333 2.2833 

K = CD – 0.4073 – 2.6833 1.6167 

L = ABC – 0.1345 – 2.0286 1.8071 

M = ABD – 0.3923 – 2.2357 1.5 

N = ACD – 1.0192 – 2.85 0.75 

O = BCD – 2.0217  0.2667 3.7 

P = ABCD    2.95  1.8143 3.9929 

It can be seen from the above table that factor BCD and ABCD are 
definitely active since both confidence intervals do not contain zero. These 
results agree with the results of Box and Meyer [8], Taguchi and Wu [21], 
and the half-normal plot method. The two most inactive factors from the 
above table are F and J; they both definitely contain 0 and the distance 
from zero to the closest end point is at least 1.8857. We can use these two 
factors to estimate the missing values and we end up with two equations 
and two unknowns; the estimates for the missing points would be in this 
case, 42.4 and 43.2. 

The half-normal plot for the original data without missing data points 
and the one using our estimate for the missing data points are given in 
Table 7. 
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Table 7 

The half-normal normal plot without 
the missing data point, i.e., the original 
data set. 

The half-normal plot with the missing data 
points and using our estimate for the 
missing points. 

  

Again, with two missing data points, the graphs are similar in 
showing that BCD and ABCD can be identified as active factors. 

Results for Y3 

With three missing data points, we have to do a resampling with 
replacement at each setting for each factor; if that factor has, for example, 
3 missing data points at the (+) setting, then you would resample 5 out of 
5 at the (+) setting and 5 out of 8 at the (−) setting. If the missing data 
points for some factor were two at the (+) setting and one at the (−) 
setting, then you would resample 6 out of 6 at the (+) setting and 6 out of 
7 at the (−) setting and so on. We have four different situations for a 
specific factor with three missing data points: 

1. All missing data points are at the (+) setting. 

2. Two missing data points at the (+) setting and one at the (−) 
setting. 

3. One missing data points at the (+) setting and two at the (−) 
setting. 

4. All missing data points are at the (−) setting. 
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The results are given in Table 8 below: 

Table 8 

Effect Effect Estimate 95%Confidence Interval 

  Lower Upper 

A 0.3502 – 4.15 4.7166 

B  – 0.9839 – 5.94 3.79 

C 4.6139   0.74167 8.475 

D 0.4622 – 4.3333 4.85 

E = AB 0.3583 – 3.9 4.9667 

F = AC 1.6541 – 3.43 6.14 

G = AD  – 0.5019 – 4.8333 3.8583 

H = BC  – 1.3725 – 6.1 2.9583 

J = BD 2.0225 – 2.5167 6.3917 

K = CD  – 5.4561 – 8.5667  – 1.9 

L = ABC 0.35 – 4.31 5.2 

M = ABD  – 0.9699 – 5.325 3.2667 

N = ACD 2.7595 – 1.32 7.27 

O = BCD 1.4169 – 3.0667 6.1333 

P = ABCD  – 2.6895 – 7.075 1.55 

Again here, it can be seen from the above table that factor C and CD 
are definitely active since both confidence intervals do not contain zero. 
These results agree with the results of Box and Meyer [8], Box et al.  [7], 
and the half-normal plot method. Box and Meyer indicate that factor ACD 
is also active and looking at our above results, 0 is the closest to one of the 
end points of the interval. If we decrease our confidence to 90%, it will be 
considered as active. 

The three most inactive factors from the above table are A, D, and 
ABC; they both definitely contain 0 and the distance from zero to the 
closest end point is at least 4.15. We can use these three factors to 
estimate the missing values and we end up with three equations and 
three unknowns; the estimates for the missing points would be in this 
case, 42.4 and 43.2. 
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Note. If the three equations are unsolvable, then we have to use the 
next most inactive factor, in our case, they are solvable. 

The half-normal plot for the original data without missing data points 
and the one using our estimate for the missing data points are given in 
Table 9. 

Table 9 

The half-normal normal plot without the 
missing data point, i.e., the original data 
set. 

The half-normal plot with the missing 
data points and using our estimate for the 
missing points. 

  

You can clearly see again that even with three missing data points, 
the graphs are similar in showing that C, CD, and ACD stand out, so they 
are the active factors. 

Results for Y4 

The results for Y4 agreed with the results of Box and Meyer [8] and 
with the results of Davis [11]. This was checked assuming one and two 
missing data points. However to avoid repetition, the results will not be 
displayed in this paper. 

Conclusion 

The results of this paper, with one, two or three missing data points 
agree totally with the results of Draper and Stoneman [12], Box and 
Meyer [8], and the original authors, who used these data sets. Also, the 
bootstrap estimates of the active effects agree well with the original 
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normal plot method and Box-Meyer method. Using the bootstrap 
estimates provide confidence interval for the effect size. The level of 
confidence can be adjusted to make the selection of active factors more or 
less stringent as was seen in the previous example. Also, these confidence 
intervals can be used to decide, which the most inactive factors are; this 
will help in estimating the missing responses. 

Our choice was to do the resampling 1,000 times. Resampling much 
less than a thousand times will not provide as good results. It is not clear 
how many times you should resample at each level. 
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